有理数的小数怎么化成分数, 比如5.5怎么化成分数。 加分
- 培训职业
- 2025-05-05 01:12:08
编辑本段将无限循环小数化成分数 0.|a1a2a3a4a5a6…an|=?
令x=0.|a1a2a3a4a5a6…an|= 则10^n*x=a1a2a3a4a5…an.|a1a2a3a4a5a6…an|
(10^n-1)x=a1a2a3a4…an x=a1a2a3a4…an/(10^n-1)
创始来源
古埃及人约于公元前17世纪初已使用分数,中国《九章算术》中也载有分数的各种运算。分数的使用是由于除法运算的需要。除法运算可以看作求解方程px=q(p≠0),如果p,q是整数,则方程不一定有整数解。为了使它恒有解,就必须把整数系扩大成为有理系。
关于有理数系的严格理论,可用如下方法建立。在Z×(Z -{0})即整数有序对(但第二元不等于零)的集上定义的如下等价关系:设 p1,p2 Z,q1,q2 Z - {0},如果p1q2=p2q1。则称(p1,q2)~(p2,q1)。Z×(Z -{0})关于这个等价关系的等价类,称为有理数。(p,q)所在的有理数,记为 。一切有理数所成之集记为Q。令整数p对应一于,即(p,1)所在的等价类,就把整数集嵌入到有理数的集中。因此,有理数系可说是由整数系扩大后的数系。
有理数集合是一个数域。任何数域必然包含有理数域。即有理数集合是最小的数域。
有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。
依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。采用度量,有理数构成一个度量空间,这是上的第三个拓扑。幸运的是,所有三个拓扑一致并将有理数转化到一个拓扑域。有理数是非局部紧致空间的一个重要的实例。这个空间也是完全不连通的。有理数不构成完备的度量空间;实数是的完备集。
多重随机标签