当前位置:首页 > 培训职业 > 正文

求二元函数的二阶偏导数

郭敦荣回答:

二元函数z=f(x,y)的二阶偏导数共有四种情况:

(1)∂z²/∂x²=[∂(∂z/∂x)]/ ∂x;

(2)∂z²/∂y ²=[∂(∂z/∂y)]/ ∂y;

(3)∂z²/(∂y ∂x) =[∂(∂z/∂y)]/ ∂x,;

(4)∂z²/(∂x∂y) =[∂(∂z/∂x)]/ ∂y

其中,∂z²/(∂y∂x),∂z²/(∂x∂y)称为函数对x,y的二阶混合偏导数,其求法上面已给出了基本公式,下面举例说明,

设二元函数z=sin(x/y),求∂z²/(∂y∂x),∂z²/(∂x∂y),

解∵∂z/∂x=(1/y)cos(x/y),∂z/∂y=(-x/y²)cos(x/y),

∴∂z²/(∂y∂x) =[∂(∂z/∂y)]/ ∂x=(-1/y²)cos(x/y)+(x/y^3)sin(x/y)。

∂z²/(∂x∂y) =[∂(∂z/∂x)]/ ∂y=(-1/y²)cos(x/y)+(x/y^3)sin(x/y)。

多重随机标签

猜你喜欢文章