高中函数fx解析式的求法
- 培训职业
- 2025-05-04 10:10:39
原命题:
已知:函数f(x)=ax^3+bx²+cx+2的单调递增区间是(-1,3),且函数f(x)有极大值11/3,求函数f(x)的解析式。
【说明:^表幂运算符号,即^2表示2次方(或次幂);^3表示3次方(或次幂),依次类推^(),表示()中的数值次方(或次幂),依此类推】
解:
∵ 函数f(x)=ax^3+bx²+cx+2
∴ 函数f(x)=ax^3+bx²+cx+2的导数函数f"(x)为:
f"(x)=3ax²+2bx+c,
设f"(x)=0时,根的判别式为△,即:△=4b²-12ac
∵ 函数f(x)=ax^3+bx²+cx+2的单调递增区间是(-1,3),且函数f(x)有极大值11/3;
∴ 函数f(x)=ax^3+bx²+cx+2的单调递增区间是(-1,3),其它区间函数f(x)不存在递减,
这样:根据函数,及其函数导数的极值点和极值情况,大致分析如下:
(-∞,-1) -1 (-1,3) 3 (3,+∞)
f"(x) 必须+ f"(-1) - f"(3) 必须+
f(x) 必须↑ 有极大值 ↓ 有极小值 必须↑
根据上述表述,可知道:
函数f(x)=ax^3+bx²+cx+2的单调递增区间是(-1,3),且函数f(x)有极大值11/3,那么:
1)函数f(x)的导数f"(x)=3ax²+2bx+c在(-1,3)必须小于0;
2)函数f(x)在(-∞,-1)、(3,+∞)必须是递增函数,即:不存在递减情况;
3)函数f(x)的极大值点在f(-1)=11/3,那么导数f"(x)=0时,两个根为:-1、3;
【函数极值的必要条件为】
若函数y=f(x)在x0处可导,且f(x0) 为极值(即:x0 为值点),则f"(x0)=0;
上一篇
七年级政治背记方法
多重随机标签