线性代数矩阵相似问题
- 培训职业
- 2025-05-06 19:27:55
可以根据等价 合同 相似的定义证明
等价:
存在可逆矩阵P、Q,使PAQ=B,则A与B等价,充要条件就是R(A)=R(B)。所谓矩阵A与矩阵B等价,即A经过初等变换可得到B。
相似
设A,B为n阶矩阵,如果有n阶可逆矩阵P存在,使得P^(-1)*A*P=B成立,则称矩阵A与B相似,记为A~B.
你问的问题有点不清楚
可以根据等价 合同 相似的定义证明
等价:
存在可逆矩阵P、Q,使PAQ=B,则A与B等价,充要条件就是R(A)=R(B)。所谓矩阵A与矩阵B等价,即A经过初等变换可得到B。
相似
设A,B为n阶矩阵,如果有n阶可逆矩阵P存在,使得P^(-1)*A*P=B成立,则称矩阵A与B相似,记为A~B.
你问的问题有点不清楚
多重随机标签