利用逐项积分或逐项求导,求级数的和函数
- 培训职业
- 2025-05-05 05:03:12
设s(x)=Σ [x^(2n+1)]/(2n+1)
两边求导得:s'(x)=Σ x^(2n)=1/(1+x²)
两边从0→x积分,得:
s(x)-s(0)=arctanx-arctan0
即:s(x)=s(0)+arctanx
从原级数中算得:s(0)=0
因此,s(x)=arctanx
设s(x)=Σ [x^(2n+1)]/(2n+1)
两边求导得:s'(x)=Σ x^(2n)=1/(1+x²)
两边从0→x积分,得:
s(x)-s(0)=arctanx-arctan0
即:s(x)=s(0)+arctanx
从原级数中算得:s(0)=0
因此,s(x)=arctanx
多重随机标签