当前位置:首页 > 培训职业 > 正文

常微分方程定性与稳定性方法

常微分方程定性与稳定性方法如下:

1.计算函数法:采用各种数值方法求解二阶微分方程,可以快速解决定性和稳定性方法问题。

2.拉格朗日差分方程法:使用有限差分步长比较,来解决定性和稳定性方法,从而帮助用户快速了解系统行为。

3.高阶差分法:利用一组高阶差分方程以精确的高次近似形式描述稳定性模型,有效的解决定性和稳定性问题。

扩展资料

《常微分方程定性与稳定性方法》是为应用数学专业的硕士生和高年级本科生所编写的一本教材。主要包括定性理论、稳定性理论和分支理论三个部分。内容着眼于应用的需要,取材精练,注意概念实质的揭示、定理思路的阐述、应用方法的介绍和实际例子的分析,并配合内容引入了计算机软件。章后附有习题。

应用数学(Applied Mathematics)是应用目的明确的数学理论和方法的总称,研究如何应用数学知识到其它范畴(尤其是科学)的数学分枝,可以说是纯数学的相反。

包括微分方程、向量分析、矩阵、傅里叶变换、复变分析、数值方法、概率论、数理统计、运筹学、控制理论、组合数学、信息论等许多数学分支,也包括从各种应用领域中提出的数学问题的研究。计算数学有时也可视为应用数学的一部分。

应用数学包含两个词:”应用”和”数学”。大体而言,应用数学就包括两个部分,一部分就是与应用有关的数学,这是传统数学的一支,我们可称之为”可应用的数学”。另外一部分是数学的应用,就是以数学为工具,探讨解决科学、工程学和社会学方面的问题,这是超越传统数学的范围。

应用数学在21世纪,主要是应用于两个领域,一个是计算机,随着计算机的飞速发展,需要一大批懂数学的软件工程师做相应的数据库的开发,另一个是经济学,经济学有很多都需要用非常专业的数学进行分析,应用数学有很多相关课程本身设计就是以经济学实例为基础的。

多重随机标签

猜你喜欢文章