合同一定是相似吗
- 培训职业
- 2025-05-05 19:44:48
合同矩阵不一定相似,在对称阵的前提下,矩阵相似一定合同,合同不一定相似。相似要求特征值一样,合同只要求特征值的正负性一样,也就是特征值一样,就相似且合同,特征值不一样但正负性相同就合同但不相似。
设A,B均为n阶方阵,若存在n阶可逆矩阵p,使得P^TAP=B,则称矩阵A、B为合同矩阵。设A、B均为n阶方阵,若存在n阶可逆矩阵P,使P^-1AP=B,则称矩阵A与B为相似矩阵(若n阶可逆矩阵P为正交阵,则称A与B为正交相似矩阵)。
合同矩阵的性质:
1、反身性:任意矩阵都与其自身合同。
2、对称性:A合同于B,则可以推出B合同于A。
3、传递性:A合同于B,B合同于C,就可以推出A合同于C。
4、合同矩阵的秩相同。
矩阵合同的主要判别法如下:
设A,B均为复数域上的n阶对称矩阵,则A与B在复数域上合同等价于A与B的秩相同。
设A,B均为实数域上的n阶对称矩阵,则A与B在实数域上合同等价于A与B有相同的正、负惯性指数(即正、负特征值的个数相等)。
多重随机标签