当前位置:首页 > 培训职业 > 正文

为什么一个函数可能存在不定积分,也可能没有不定积分

具体解题如图:

一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。

连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

扩展资料:

1、常用的积分公式:

(1)∫0dx=c

(2)∫x^udx=(x^(u+1))/(u+1)+c

(3)∫1/xdx=ln|x|+c

(4)∫a^xdx=(a^x)/lna+c

(5)∫e^xdx=e^x+c

(6)∫sinxdx=-cosx+c

2、一般定理

(1)设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。

(2)设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。

(3)设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。

多重随机标签

猜你喜欢文章