当前位置:首页 > 培训职业 > 正文

为什么行列式等于0,齐次方程组有非零解

这个系数行列式必然行数和列数是想等的,如果这个行列式的值是0那么行列式在行的初等变换中 必然可以出现一行全部都是0的状态。

常数项全部为零的线性方程组。如果m<n(行数小于列数,即未知数的数量大于所给方程组数),则齐次线性方程组有非零解,否则为全零解。

扩展资料

一、判定定理

定理1

齐次线性方程组

有非零解的充要条件是r(A)<n。即系数矩阵A的秩小于未知量的个数。

推论

齐次线性方程组

仅有零解的充要条件是r(A)=n。

二、性质

1、齐次线性方程组的两个解的和仍是齐次线性方程组的一组解。

2、齐次线性方程组的解的k倍仍然是齐次线性方程组的解。

3、齐次线性方程组的系数矩阵秩r(A)=n,方程组有唯一零解。齐次线性方程组的系数矩阵秩r(A)<n,方程组有无数多解。

4、n元齐次线性方程组有非零解的充要条件是其系数行列式为零。等价地,方程组有唯一的零解的充要条件是系数矩阵不为零。(克莱姆法则)

参考资料来源:百度百科-齐次线性方程组

多重随机标签

猜你喜欢文章