放射性测量方法及应用实例
- 培训职业
- 2025-05-06 18:07:04
利用天然射线测量法找水,目前国内采用的方法有γ测量、静电α卡法、α径迹测量及210po测量等,不同方法可探测不同的核素异常。一般来说,α放射性测量比γ放射性测量更为灵敏,探测深度更大。尤其是α径迹测量和210Po测量,其干扰因素少,有利于克服地形、地物和气候变化等影响。210Po测量比α径迹测量显示的异常范围大,异常边界不很清晰,但其工作周期短,取样分析比较方便。所以,在利用天然放射性寻找地下水源时,若覆盖层较薄,工作范围较大,则使用快捷的γ测量;若覆盖层厚度大,工作范围小,则采用α径迹测量或210Po测量。
(一)γ测量
γ测量是直接测定迁移至地表的放射性元素(包括氡的衰变物)所发出的γ射线。一般高精度辐射仪如FD-71、FD-31、TFS-1和TFS-2型辐射仪,徒步沿剖面测量。
γ测量是一种简便的找水方法,具有仪器轻便、工作方法简单、效率高、成本低和结果直观的优点。但由于含水构造引起的放射性异常强度一般只有正常场的1.1~1.4倍,要可靠地确定异常性质,测量时要求:辐射仪的灵敏度应大于3ppmeU(等效铀含量);观测读数的相对标准偏差小于3%;测量探头应有较低的本底读数。
γ测量探测深度小,一般只有几十厘米至几米,最深不超过15m。当测区的地下水较丰富、埋藏较深、流速较大、表层又缺少土时,不利于放射性元素富集,在其上不易发现放射性异常。在开展工作时,要注意γ测量的方法有效性,不可盲目使用。
图5-4-1是山东平阳一条剖面上γ测量的结果。地表为厚度约10m的黏性土、基岩为页岩和灰岩。两台辐射仪观测的γ曲线上均有明显的低值异常,极小值比正常值低25%左右。经钻探验证,在50号点附近石灰岩破碎、裂隙发育,钻孔内静水位8m,抽水试验时地下水位降14m,涌水量达1900~2400m3/d。低值γ异常为含水构造裂隙的反映。
(二)α径迹测量
所谓径迹是指裂变碎片在绝缘固体物质中产生的辐射损伤。当利用塑料胶片在土壤层浅孔中接收氡、钍及其子体所产生的α线辐射时,α粒子就在胶片上辐射损伤,因肉眼看不到,故又称为潜伏径迹,经化学方法腐蚀后蚀刻出来的辐射损伤叫做径迹。在普通光学显微镜下,径迹呈圆锥形的坑洞,称为蚀坑。蚀坑在镜下透视平面表现为圆形或椭圆形带黑边的亮点。根据胶片上出现的径迹(亮点)密度,可估计辐射到胶片上的α射线强度。
图5-4-1 山东平阳γ曲线图
α径迹测量是利用径迹现象来找水的一种新方法,是利用塑料胶片在土壤层浅孔中接收氡、钍及其子体产生的α射线的辐射,然后用一定倍数的显微镜观测经化学腐蚀方法处理的塑料胶片上的径迹密度。在富水裂隙带上部的土壤层中可形成高于背景值的径迹密度异常,根据径迹密度异常可确定裂隙带,从而达到寻找基岩裂隙水的目的。α径迹测量简单易行,比γ测量有更高的灵敏度。由于氡的半衰期为3.825天,能扩散百米之外。所以,它通常可探测埋深几十米的地下水。
α径迹测量设备包括:
1)探测装置:为塑料胶片和探杯。塑料胶片可选用醋酸纤维胶片或硝酸纤维胶片,探杯用直径8cm、高9cm的陶瓷茶杯或塑料探杯。
2)蚀刻装置:包括恒温水浴锅、温度计、台杯、烧杯、量杯、化学蚀刻架、化学试剂(KOH、NaOH、KMnO4、和HCl)等。
3)观测装置:为普通生物显微镜,并附有统计径迹密度使用的刻度尺。
野外工作时,首先将塑料胶片剪成1.5cm×3.5cm的长方形,并在两端用针尖刻记编号,编号要统一刻在胶片的同一面。然后用透明胶带粘住胶片两端,将其粘着固定在探杯内离杯口4cm的深处,使胶片平悬于探杯中央,见图5-4-2。然后,在选择的剖面上,按一定的点距(一般为3~5m),挖35~45cm深的浅孔,浅孔要避开人工填土、沟边、陡坎边。将编好号的探杯口朝下放入浅孔,盖上塑料布再压土封好。由于氡的半衰期为3.825天,在埋杯后一个月左右,氡及其子体可达到平衡。因此,埋杯时间一般为15~30天。为了保证测量条件的一致,在同一测区,必须统一埋杯时间。
图5-4-2 探测器安装过程示意图
α径迹测量测量结果以α径迹密度曲线剖面图表示,见图5-4-3。
图5-4-3 α径迹密度曲线剖面图
径迹密度单位可用胶片上每0.26mm2内径迹数目(j)或每平方毫米内径迹数目(j/mm2)表示。一般认为,径迹密度异常值高于背景值4倍以上时,反映构造断裂的效果较好。
依断裂规模、性质的不同,在α径迹密2度曲线上呈现不同的异常特征。可有如下异常类型(图5-4-4)。
图5-4-4 常见的几种α径迹密度曲线异常类型示意图
1)单峰状异常:以一点或相邻两点形成的异常为特征,常反映单一的直立的断裂带,其两侧次级断裂、裂隙、破碎不发育,如图5-4-4(a)。
2)双峰状异常:其特征是以一点或相邻两点形成主峰异常,在其一侧出现强度上次于主峰异常的次峰异常,如图5-4-4(b)。主峰异常为主断裂带的反映,次峰异常为主断裂上盘一侧的次级裂隙或破碎的反映。
3)多峰状异常:其特征是曲线呈锯齿状,异常有一定宽度,反映宽度较大的断裂带或较宽的节理密集破碎带,如图5-4-4(c)。
4)对称异常:其特征是在低缓异常背景上叠加了单峰状异常,主峰异常反映了直立的主断裂,两侧低缓异常反映了次级断裂带或破碎带(图5-4-4(d))。
除上述类型外,还常见以下一些不规律形态的曲线,见图5-4-5。
图5-4-5 几种不规则的曲线形态
(三)210Po测量
210Po测量是通过取土壤样品,用化学处理的办法将样品中放射性元素210Po置换到铜、镍等金属片上,再用α辐射仪测量析沉在金属片上的210Po所辐射的α射线强度。
由于新构造断裂上方的土壤层中210Po的含量明显地比周围的含量高,因此,用210Po测量测得的α射线强度异常可推断新构造断裂的位置,从而达到找水的目的。
210Po测量的野外工作主要是采样。采样点距为3~5m,采样深度35~45cm,样品质量约20~30g。210Po测量可与α径迹测量配合,在α径迹测量的土壤层浅孔底取样。
210Po测量的室内工作包括样品的化学处理和金属片上的α射线强度测定。其步骤有:
1)称量8~10g样品放入100mL的烧杯中;
2)注入2.5“N”的HCl130mL,浸泡数小时;
3)将直径为19cm的铜片放入溶液中,振荡3~4小时;
4)取出铜片,用清水冲洗干净,晾干;
5)用低本底α辐射仪(如EJ-13、FD-3005型等)测量铜片上α射线强度,其单位以计数率(脉冲/h)表示。
210Po测量结果以剖面曲线图表示。曲线高于背景值2~3倍以上的α射线强度定义为异常。
图5-4-6是无锡某地用210Po测量寻找新构造裂隙水的例子。测区出露地层有上志留系茅山组砂岩、石英砂岩。区内裂隙、节理发育,断裂构造有NW290°和NE10°两组。在预计布井的范围内,经地质观测认为,NE10°一组裂隙为更新的一组含水构造。为此,布置了近东西向α径迹测量剖面。测量结果见图5-4-6(b)。由图可以看出,在3号点和12号点出现明显的异常,经12号点处的钻探验证,表明异常为含水新构造裂隙带引起。
图5-4-6 无锡某地地质、物探综合剖面图
为了验证210Po测量探测新构造裂隙水的效果,在α径迹剖面上采集土壤样品,测量210Po的α径迹密度异常位置上同样出现α射线强度异常,而且比α径迹密度异常更明显。
多重随机标签