正多棱体的欧拉公式是
- 培训职业
- 2025-05-06 07:22:57
多面体的欧拉公式是:V+F–E=2。
若用F表示一个正多面体的面数,E表示棱数,V表示顶点数,则有F+V-E=2,即“表面数+顶点数-棱长数=2”。F+V-E=2,这个公式叫欧拉公式。公式描述了简单多面体顶点数、面数、棱数特有的规律。
V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数。如果P可以同胚于一个球面(可以通俗地理解为能吹胀而绷在一个球面上),那么X(P)=2,如果P同胚于一个接有h个环柄的球面,那么X(P)=2-2h。
定义
由若干个平面多边形围成的几何体叫做多面体。围成多面体的多边形叫做多面体的面。两个面的公共边叫做多面体的棱。若干条棱的公共顶点叫做多面体的顶点。把多面体的任何一个面伸展,如果其他各面都在这个平面的同侧,就称这个多面体为凸多面体。
多面体至少有4个面。多面体依面数分别叫做四面体、五面体、六面体等等。把一个多面体的面数记作F,顶点数记作V,棱数记作E,则F、E、V满足如下关系:F+V=E+2。
这就是关于多面体面数、顶点数和棱数的欧拉定理,每个面都是全等的正多边形的多面体叫做正多面体。每面都是正三角形的正多面体有正四面体、正八面体和正二十面体。
每面都是正方形的多面体只有正六面体即正方体,每面都是正五边形的只有正十二面体。由欧拉定理可知一共只有这5种正多面体。
特征
面与面之间仅在棱处有公共点,且没有任何两个面在同一平面上。一个多面体至少有四个面。通常情况下,只有当多面体的所有面均为平面且单联通,并且其所包围的内部空间单联通时,才为经典多面体。
注意:各面都是平面的立体图形称为多面体。像圆锥、圆台因为有的面是曲面,而不被称为多面体。圆锥、圆柱、圆台统称为旋转体。立体图形的各个面都是平的面,这样的立体图形称为多面体。
多重随机标签