求微分方程y"-y'-2y=0的通解
- 培训职业
- 2025-05-05 14:44:07
微分方程y″-y′-2y=0的通解为y=C1*e^(2x)+C2*e^(-x)+C。
解:根据微分方程特性,可通过求特征方程的解来求微分方程的通解。
微分方程y″-y′-2y=0的特征方程为r^2-r-2=0,
可求得,r1=2,r2=-1。
而r1≠r2。
那么微分方程y″-y′-2y=0的通解为,
y=C1*e^(2x)+C2*e^(-x)+C(其中C1、C2与C为任意实数)。
扩展资料
微分方程研究的来源:它的研究来源极广,历史久远。牛顿和G.W.莱布尼茨创造微分和积分运算时,指出了它们的互逆性,事实上这是解决了最简单的微分方程y'=f(x)的求解问题。当人们用微积分学去研究几何学、力学、物理学所提出的问题时,微分方程就大量地涌现出来。
牛顿本人已经解决了二体问题:在太阳引力作用下,一个单一的行星的运动。他把两个物体都理想化为质点,得到3个未知函数的3个二阶方程组,经简单计算证明,可化为平面问题,即两个未知函数的两个二阶微分方程组。
下一篇
有关副词的题
多重随机标签