请帮我详细的解析一下下列天文问题.(重赏,再加分)
- 培训职业
- 2025-05-05 14:08:43
太长了...
造父变星(Cepheid variable star)
一类高光度周期性脉动变星,也就是其亮度随时间呈周期性变化。 因典型星仙王座δ 而得名。仙王座δ星最亮时为3.7星等,最暗时只有4.4星等,这种变化很有规律,周期为5天8小时47分28秒。这称作光变周期。这类星的光变周期有长有短,但大多在1至50天之间,而且以5至6天为最多。由于我国古代将“仙王座δ”称作“造父一”,所以天文学家便把此类星都叫做造父变星。人们熟悉的北极星也是一颗造父变星。科学家们经过研究发现,这些变星的亮度变化与它们变化的周期存在着一种确定的关系,光变周期越长,亮度变化越大。人们把这叫做周光关系,并得到了周光关系曲线。以后在测量不知距离的星团、星系时,只要能观测到其中的造父变星,利用周光关系就可以将星团、星系的距离确定出来。因此,造父变星被人们誉为“量天尺”。
1912年,美国天文学家勒维特(Leavitt)在研究大麦哲伦星云和小麦哲伦星云时,在小麦哲伦星云中发现25颗变星,其亮度越大,光变周期越大,极有规律,称为周光关系。由于小麦哲伦星云距离我们很远,而小麦哲伦星云本身和距离相比很小,于是可以认为小麦哲伦星云中的变星距离我们一样远。这样,天文学家就找到了比较造父变星远近的方法:如果两颗造父变星的光变周期相同则认为它们的光度就相同。这样只要用其他方法测量了较近造父变星的距离,就可以知道周光关系的参数,进而就可以测量遥远天体的距离。
但是造父变星本身太暗淡,能够用来测量的河外星系很少。其他的测量遥远天体的方法还有利用天琴座RR变星以及新星等方法。
造父变星在可见光波段,光变幅度0.1~2等。光变周期大多在1~50天范围内,也有长达一二百天的。
造父变星实际上包括两种性质不同的类型:星族Ⅰ造父变星(或称经典造父变星)和星族Ⅱ造父变星(或称室女W型变星),它们有各自的周光关系和零点,对相同的周期,前者的光度比后者小1.4等左右。
造父变星光谱由极大时的F型变到极小时的G~K型(见恒星光谱分类),谱线有周期性位移,视向速度曲线的形状大致是光变曲线的镜像反映。这意味着亮度极大出现在星体膨胀通过平衡半径的时刻(膨胀速度最大)而不是按通常想象那样发生在星体收缩到最小,因而有效温度最高的时刻,位相差0.1~0.2个周期。这种极大亮度落后于最小半径的位相滞后矛盾,被解释为星面下薄薄的电离氢区在脉动过程中跟辐射进行的相互作用而引起的现象。
时间分辨率
开放分类: 地理、遥感
时间分辨率是指在同一区域进行的相邻两次遥感观测的最小时间间隔。对轨道卫星,亦称覆盖周期。时间间隔大,时间分辨率低,反之时间分辨率高。时间分辨率是评价遥感系统动态监测能力和“多日摄影”系列遥感资料在多时相分析中应用能力的重要指标。根据地球资源与环境动态信息变化的快慢,可选择适当的时间分辨率范围。按研究对象的自然历史演变和社会生产过程的周期划分为5种类型:①超短期的。如台风、寒潮、海况、鱼情、城市热岛等,需以小时计;②短期的。如洪水、冰凌、旱涝、森林火灾或虫害、作物长势、绿被指数等,要求有以日数计;③中期的。如土地利用、作物估产、生物量统计等,一般需要以月或季度计;④长期的。如水土保持、自然保护、冰川进退、湖泊消长、海岸变迁、沙化与绿化等,则以年计;⑤超长期的。如新构造运动、火山喷发等地质现象,可长达数十年以上。
引力透镜
开放分类: 天文、物理、自然现象、引力、广义相对论
引力透镜(gravitational lensing)
引力透镜效应是阿尔伯特·爱因斯坦的广义相对论所预言的一种现象,由于时空在大质量天体附近会发生畸变,使光线在大质量天体附近发生弯曲(光线沿弯曲空间的短程线传播)。如果在观测者到光源的视线上有一个大质量的前景天体则在光源的两测会形成两个像,就好像有一面透镜放在观测者和天体之间一样,这种现象称之为引力透镜效应。对引力透镜效应的观测证明阿尔伯特·爱因斯坦的广义相对论确实是引力的正确描述。
在有些情况下,起引力透镜作用的天体是一个星系,它对光的弯曲作用能产生类星体或其他星系等更遥远天体的多重像。有些天文学家认为,多达2/3的已知类星体可能由于引力透镜效应而增加了亮度。研究引力透镜对遥远类星体光线的影响,有助于解决关于宇宙年龄和宇宙当前膨胀速率的争论。
当银河系中一个暗天体正好在一较远恒星(如麦哲伦星云中的一颗恒星)前经过,使得它的像短暂增亮,就是较小规模的引力透镜效应。单个恒星造成的这种引力透镜有时叫做“微透镜(Microlensing)”。1993年,天文学家利用微透镜效应观测到银河系中存在一种暗物质(dark matter),称做 MACHOs(massive compact halo objects,致密暗天体)。
类星射电源
开放分类: 宇宙、科学、天文、自然、天体物理
类星射电源是一类体积相对较小、但辐射能力很强的天体。这类星体距离地球通常都有数十亿光年之遥。它们是射电辐射比较强的的类星体。
自首批类星射电源发现至今已有40余年时间,但科学界对它们的结构和周围环境依然知之甚少。长期以来,天文学家们一直试图揭开这类天体的诞生之谜。随着“钱德拉”X射线望远镜观测活动的深入,科学家们终于在不久前获得了有关类星射电源辐射过程的初步信息。
借助“钱德拉”望远镜,天文学家们又新观测到了两颗类星射电源--编号分别为4C37.43和3C249.1。在这两个星体的周围发现了多个因受X射线辐射而形成的炙热区域。在距离4C37.43和3C249.1数十光年远的地方均分布有大型的中央黑洞。
以前曾有天文学家推测,类星射电源可能会不断地向周围空间喷发炙热气体(被称为“星系风”,类似于“太阳风”),而“钱德拉”望远镜的最新观测成果似乎正好证明了这种“星系风”的存在:它在4C37.43和3C249.1附近区域记录到了由高温气体组成并且不断辐射出X射线的云团。专家们认为,通过研究这些具有高度放射性的云团,将有可能确定出在类星射电源于大约40亿年前形成时产生的冲击波的传播方向。
天文学家们认为,类星射电源可能是通过下面这种方式形成的:当两个星系发生融合时,位于它们之间的气体会受到挤压,导致新恒星不断形成并为中央黑洞的成长提供了“食物”。黑洞在吸入上述星际气体的过程中会释放出大量能量,从而孕育出类星射电源。观测显示,这些类星射电源的辐射强度均要明显高于其所处的星系。类星体释放出的强大射线会不断地将星系中的气体“吹”向周围空间,从而形成“星系风”。在大约1亿年之后,这些“星系风”会将位于星系中心区域的气体全部吹出,其结果是:新恒星将不再形成,而黑洞也将停止生长。进入这一阶段后,类星射电源会逐渐走向消亡,其所处的星系将进入一个相对“平静”的时期--直到再次与其他星系发生融合。
类星体太太太长,没法发
还有,想要图联系。
愿意帮忙。:-)
上一篇
鷉忎赉鱳 的拼音
多重随机标签