当前位置:首页 > 培训职业 > 正文

有限元方法的核心思想是什么

有限元法(Finite Element Method)是基于近代计算机的快速发展而发展起来的一种近似数值方法, 用来解决力学,数学中的带有特定边界条件的偏微分方程问题(PDE)。而这些偏微分方程是工程实践中常见的固体力学和流体力学问题的基础。有限元和计算机发展共同构成了现代计算力学 (Computational Mechanics)的基础。有限元法的核心思想是“数值近似”和“离散化”, 所以它在历史上的发展也是围绕着这两个点进行的。“数值近似”

由于在有限元法被发明之前,所有的力学问题和工程问题中出现的偏微分方程只能依靠单纯的解析解(Analytical Solution)得到解答。这种方法对数学要求很高,而且非常依赖于一些理想化的假定(Assumption)。比如在土木工程中梁柱计算中出现的平截面假定,小应变假定,理想塑性假定。这些假定其实是和实际工程问题有很大偏差的,而且一旦工程问题稍微复杂一些我们就不能直接得到解析解,或者解析解的答案误差过大。而有限元法把复杂的整体结构离散到有限个单元(Finite Element),再把这种理想化的假定和力学控制方程施加于结构内部的每一个单元,然后通过单元分析组装得到结构总刚度方程,再通过边界条件和其他约束解得结构总反应。总结构内部每个单元的反应可以随后通过总反应的一一映射得到,这样就可以避免直接建立复杂结构的力学和数学模型了。其总过程可以描述为:

总结构离散化 — 单元力学分析 — 单元组装 — 总结构分析 — 施加边界条件 — 得到结构总反应 — 结构内部某单元的反应分析

在进行单元分析和单元内部反应分析的时候,形函数插值(shape function interpolation)和 高斯数值积分(Gaussian Quadrature)被用来近似表达单元内部任意一点的反应,这就是有限元数值近似的重要体现。一般来说,形函数阶数越高,近似精度也就越高,但其要求的单元控制点数量和高斯积分点数量也更多。另外单元划分的越精细,其近似结果也更加精确。但是以上两种提高有限元精度的代价就是计算量几何倍数增加。

为了提高数值近似精度同时尽量较少地提高计算量,有限元法经历了很多发展和改良。下图就是一典型的有限元问题,因为模型中间空洞部分几何不规则性,结构用有限三角单元划分。由于在靠外区域,结构反应变化程度不是很大,因此划分的单元比较大和粗糙,而在内部,应力变化比较大,划分也比较精细。而在左边单元划分最密区域,有应力集中现象(如裂纹问题的奇异解现象),所以又有相应的高级理论(比如non-local theory)来指导这部分的单元应力应变计算。结构被选择性地离散,和高级理论构成了有限元发展的主要研究方向。

多重随机标签

猜你喜欢文章