spss实证分析回归分析怎么看啊
- 培训职业
- 2025-05-06 18:40:11
实证分析回归分析怎么看啊?
回归分析步骤
对回归结果进行说明,其中包括模型效果以及模型结果两大部分。具体如下:
另外,模型中包括性别、年龄控制变量,控制变量指可能干扰模型的项,比如年龄,学历等基础信息。从软件角度来看,并没有“控制变量”这样的名词。“控制变量”就是自变量,所以直接放入“自变量X”框中就好。 另外,控制变量一般是定类数据,理论上控制变量需要作“虚拟(哑)变量”设置,但实际研究中很少这样做而是直接放入模型中,可能原因是“控制变量”并非核心研究项,所以不用考虑太过复杂。
1.模型效果
(1)F检验
从上表可以看出,离差平方和为940619.24,残差平方和为266091.99,而回归平方和为674527.26。回归方程的显著性检验中,统计量F=318.56,对应的p值小于0.05,被解释变量的线性关系是显著的,可以建立模型。建立模型后,需要查看模型拟合优度是否可以,其中就可以查看R方与调整R方值。
(2)拟合优度
从上表可知,将社会资源, 教育水平, 科技发展作为自变量,而将创业可能性作为因变量进行线性回归分析,从上表可以看出,模型R方值为0.72,调整R方为0.71,其中R方是决定系数,模型拟合指标。反应Y的波动有多少比例能被X的波动描述。调整R方也是模型拟合指标。当x个数较多是调整R²比R²更为准确。意味着初始工资、受教育年限以及工作经验可以解释目前工资的72%变化原因。可见,模型拟合优度良好,说明被解释变量可以被模型解释大部分。接下来查看变量是否具有多重共线性。
(3)多重共线性
VIF值用于检测共线性问题,一般VIF值小于10即说明没有共线性(严格的标准是5),上表格可以看出VIF值均小于5所以不存在多重共线性。
2.模型结果
回归的中间过程包括F检验、拟合优度、多重共线性,这些都是在分析前需要进行观测与分析的,接下来将从模型公式、分析结果、影响关系大小进行对模型结果的阐述。
(1)模型公式
从上表可知,将受教育年限,初始工资,工作经验作为自变量,而将目前工资作为因变量进行线性回归分析从上表可以看出,模型公式为目前工资=-0.189 + 3.531*受教育年限 + 1.846*初始工资-11.866*工作经验(观测非标准化系数)。
(2)分析结果
从结果可以看出受教育年限,初始工资,工作经验三个分析项的p值均小于0.05,从而说明受教育年限,初始工资,工作经验对目前工资均有影响关系。
(3)影响关系大小
如果说自变量X已经对因变量Y产生显著影响(P< 0.05),还想对比影响大小,建议可使用标准化系数值的大小对比影响大小,Beta值大于0时正向影响,该值越大说明影响越大。Beta值小于0时负向影响,该值越小说明影响越大。上图所示,回归方程的常数项约为-0.19,受教育年限、初始工资以及工作经验的标准化系数分别为3.53、1.85以及-11.87。可以看出模型中工作经验对目前工作影响较大。
下一篇
如何计算基础上部荷载
多重随机标签