当前位置:首页 > 培训职业 > 正文

为什么矩阵A的重特征值正好对应线性无关特征向量的个数

如果x1,...,xk是n阶矩阵A关于特征值λ的线性无关的特征向量令X=[x1,...,xk],

X是一个列满秩的nxk的矩阵存在n阶可逆矩阵Y使得Y的前k列是X,即Y=[X,*]

令B=Y^{-1}AY,则AY=YB,利用分块乘法可以得到

B=

λI_k

*

0

*

所以B至少有k个特征值是λ

这就说明代数重数一定不会小于几何重数另一方面,如果λ是A的特征多项式的根,即det(λI-A)=0

那么λI-A是奇异矩阵,线性方程组(λI-A)x=0有非零解,任何一个非零解都是λ对应的特征向量所以(对于n阶矩阵而言)特征值的几何重数至少是1,不可能是0

多重随机标签

猜你喜欢文章