当前位置:首页 > 培训职业 > 正文

文法的类型

文法形式

在计算机科学中,文法是编译原理的基础,是描述一门程序设计语言和实现其编译器的方法。文法的描述多用BNF(巴克斯范式),而另一个重要的概念:正则表达式,也是文法的另一种形式。

文法分类

自从乔姆斯基(Chomsky)于1956年建立形式语言的描述以来,形式语言的理论发展很快。这种理论对计算机科学有着深刻的影响,特别是对程序设计语言的设计、编译方法和计算复杂性等方面更有重大的作用。

乔姆斯基把文法分成四种类型,即0型、1型、2型和3型。这几类文法的差别在于对产生式施加不同的限制。

多数程序设计语言的单词的语法都能用正规文法或3型文法来描述。

3型文法G=(VN,VT,P,S)的P中的规则有两种形式:一种是前面定义的形式,即:A→aB或A→a其中A,B∈VN ,a∈VT*,另一种形式是:A→Ba或A→a,前者称为右线性文法,后者称为左线性文法。正规文法所描述的是VT*上的正规集。

四个文法类的定义是逐渐增加限制的,因此每一种正规文法都是上下文无关的,每一种上下文无关文法都是上下文有关的,而每一种上下文有关文法都是0型文法。称0型文法产生的语言为0型语言。上下文有关文法、上下文无关文法和正规文法产生的语言分别称为上下文有关语言、上下文无关语言和正规语言。

类型说明

设G=(VN,VT,P,S),如果它的每个产生式α→β是这样一种结构:α∈( VN∪VT )*且至少含有一个非终结符,而β∈( VN∪VT )*,则G是一个0型文法。

0型文法也称短语文法。一个非常重要的理论结果是,0型文法的能力相当于图灵机(Turing)。或者说,任何0型语言都是递归可枚举的;反之,递归可枚举集必定是一个0型语言。

对0型文法产生式的形式作某些限制,以给出1,2和3型文法的定义。

设G=(VN,VT,P,S)为一文法,若P中的每一个产生式α→β均满足|β|≥|α| ,仅仅S→ε除外,则文法G是1型或上下文有关的。

在有些文献给的定义中,将上下文有关文法的产生式的形式描述为α1Aα2→α1βα2,其中α1、α2和β都在( VN∪VT

)*中(即在V*中),β≠ε,A在VN中。这种定义与前边的定义等价。但它更能体现上下文有关这一术语,因为只有A出现在α1和α2的上下文中,才允许用β取代A。

设G=(VN,VT,P,S),若P中的每一个产生式α→β满足:α是一非终结符,β∈( VN∪VT )*则此文法称为2型的或上下文无关的。有时将2型文法的产生式表示为形如:A→β其中A∈VN,也就是说用β取代非终结符A时,与A所在的上下文无关,因此取名为上下文无关文法。

例4.1和例4.2中的文法都是上下文无关的,下面我们再给出一个例子(例4.4),例中的文法G是上下文无关文法,G的语言是由相同个数的a和b所组成的{a,b}*上的串。

设G=(VN,VT,P,S),若P中的每一个产生式的形式都是A→aB或A→a,其中A和B都是非终结符,a是终结符,则G是3型文法或正规文法。

文法G定义为四元组(VN,VT,P,S )其中

VN:非终结符号(或语法实体,或变量)集;

VT:终结符号集;

P: 规则的集合;

VN,VT和P是 非空有穷集。

S:称作识别符号或开始符号的一个非终结符,它至少要在一条产生式中作为左部出现。

VN和VT不含公共的元素,即VN ∩ VT = φ

用V表示VN ∪ VT ,称为文法G的字母表或字汇表

规则,也称重写规则、产生式或生成式,是形如→或 ∷=的( ,)有序对,其中是字母表V的正闭包V+中的一个符号,是V*中的一个符号。  称为规则的左部,  称作规则的右部。

多重随机标签

猜你喜欢文章