如何用积分法证明函数单调有界
- 培训职业
- 2025-05-05 22:46:21
E(X)
=∫(-∞,+∞) xf(x) dx
=(1/2)∫(-∞,+∞) xe^(-|x|) dx
=(1/2)[∫(-∞,0) xe^x dx + ∫(0,+∞) xe^(-x) dx ]
= (1/2)[∫(-∞,0) xde^x - ∫(0,+∞) xde^(-x) ]
=(1/2){ [xe^x]|(-∞,0) - ∫(-∞,0) e^x dx - [xe^(-x)]|(0,+∞) + ∫(0,+∞) e^(-x) dx }
=(1/2) { -∫(-∞,0) e^x dx + ∫(0,+∞) e^(-x) dx }
=(1/2) { - [e^x]|(-∞,0) - [ e^(-x)] |(0,+∞) }
= (1/2) ( -1 +1 )
=0
E(X^2)
=(1/2)∫(-∞,+∞) x^2 e^(-|x|) dx
=(1/2) [∫(-∞,0) x^2.e^x dx + ∫(0,+∞) x^2. e^(-x) dx ]
=(1/2) [∫(-∞,0) x^2 de^x - ∫(0,+∞) x^2 de^(-x) ]
=(1/2){[x^2.e^x]|(-∞,0) -2∫(-∞,0) xe^x dx - [x^2.e^(-x)]|(0,+∞) + 2∫(0,+∞) xe^(-x) dx }
=(1/2){ -2∫(-∞,0) xe^x dx + 2∫(0,+∞) xe^(-x) dx }
= -∫(-∞,0) xe^x dx + ∫(0,+∞) xe^(-x) dx
=-∫(-∞,0) xde^x - ∫(0,+∞) xde^(-x)
= - [ xe^x]|(-∞,0) + ∫(-∞,0) e^x dx -[ xe^(-x)]|(0,-∞) +∫(0,+∞) e^(-x) dx
=∫(-∞,0) e^x dx +∫(0,+∞) e^(-x) dx
= [e^x]|(-∞,0) - [e^(-x) ]|(0,+∞)
=1 +1
=2
D(X)=E(X^2)- [E(X)]^2 = 2^2 - 0 =4
多重随机标签