积分变上限函数在哪里可导
- 培训职业
- 2025-05-05 17:32:47
具体证明过程如图所示:
积分变现函数意义:
若函数f(x)在区间[a,b]上可积,则积分变上限函数在[a,b]上连续。如果函数f(x)在区间[a,b]上连续,则积分变上限函数在[a,b]上具有导数。
若函数f(x)在区间[a,b]上连续,则积分变上限函数就是f(x)在[a,b]上的一个原函数。被积函数f(x)中只含积分变量t,不含参变量x。
具体证明过程如图所示:
积分变现函数意义:
若函数f(x)在区间[a,b]上可积,则积分变上限函数在[a,b]上连续。如果函数f(x)在区间[a,b]上连续,则积分变上限函数在[a,b]上具有导数。
若函数f(x)在区间[a,b]上连续,则积分变上限函数就是f(x)在[a,b]上的一个原函数。被积函数f(x)中只含积分变量t,不含参变量x。
多重随机标签