当前位置:首页 > 培训职业 > 正文

定积分的换元法

定积分的换元法:

定积分换元法是求积分的一种方法。定积分换元法主要通过引进中间变量作变量替换使原式简易,从而来求较复杂的不定积分,它是由链式法则和微积分基本定理推导而来的,定积分换元法是求积分的一种方法,它是由链式法则和微积分基本定理推导而来的。

定积分换元主要为了在计算被积函数的原函数时方便,换元就是把其中复杂的项用另外个其他的字母所代替,换元时有三部分需要换积分区间,就是在被积分涵数中你所用字母代替的项,例如你所要积的函数是x的。

定积分换元法的定义:

在计算函数导数时,复合函数是最常用的法则,把它反过来求不定积分,就是引进中间变量作变量替换,把一个被积表达式变成另一个被积表达式。

从而把原来的被积表达式变成较简易的不定积分这就是换元积分法。换元积分法有两种,第一类换元积分法和第二类换元积分法。

在换元时把复杂的项用t来表示,然后求出x的多项式即用t的式子来表示x,这是为求第三步的dx中的x准备,然后把x的范围也就是积分区间的上下线求出各自所对应的t值作为新的上下线。

第二部求出新的积分函数,即用t所表示原来的函数,第三步即是在第一部所提到的求dx中的x用t表示,然后对这个式子求导即可。

定积分定义为:

定积分就是求函数f(X)在区间[a,b]中图线下包围的面积。即由 y=0,x=a,x=b,y=f(X)所围成图形的面积。这个图形称为曲边梯形,特例是曲边三角形。

黎曼积分定义为:

定积分的正式名称是黎曼积分。用黎曼自己的话来说,就是把直角坐标系上的函数的图象用平行于y轴的直线把其分割成无数个矩形,然后把某个区间[a,b]上的矩形累加起来,所得到的就是这个函数的图象在区间[a,b]的面积。实际上,定积分的上下限就是区间的两个端点a,b。

多重随机标签

猜你喜欢文章