化归思想在函数中的应用
- 培训职业
- 2025-05-05 09:58:04
化归不仅是一种重要的解题思想,也是一种最基本的思维策略,更是一种有效的数学思维方式。所谓的化归思想方法,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,进而达到解决的一种方法。一般总是将复杂问题通过变换转化为简单问题;将难解的问题通过变换转化为容易求解的问题;将未解决的问题通过变换转化为已解决的问题。总之,化归在数学解题中几乎无处不在,化归的基本功能是:生疏化成熟悉,复杂化成简单,抽象化成直观,含糊化成明朗。说到底,化归的实质就是以运动变化发展的观点,以及事物之间相互联系,相互制约的观点看待问题,善于对所要解决的问题进行变换转化,使问题得以解决。实现这种转化的方法有:待定系数法,配方法,整体代入法以及化动为静,由抽象到具体等转化思想。
化归思想在函数的应用比如通过求导,把三次函数转化成了熟悉的二次函数。主要运用了函数极值的概念,运用导数研究函数性质。在函数解题中,数学问题在处理中,如果感到困难且问题复杂棘手,可转化问题的结构形状,化归为一个相对简单,便于处理的问题。如本例不等式的系数比较复杂,我们采用了换元的办法,转化成了一个一元二次不等式问题,起到了化复杂为简单的效果。
多重随机标签