如何求证:如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形
- 培训职业
- 2025-05-06 07:43:03
假设△ABC中,D为AB中点,CD=1/2AB,证明△ABC为直角三角形。
证明:
∵AD=BD=CD
∴∠A=∠ACD,∠B=∠BCD
∵∠A+∠B+∠ACB=180°(△ABC的内角和)
∠ACB=∠ACD+∠BCD
∴∠A+∠B=90°
∴∠ACB=90°
∴△ABC为直角三角形
特殊性质
1、直角三角形两直角边的平方和等于斜边的平方。∠BAC=90°,则AB²+AC²=BC²(勾股定理)
2、在直角三角形中,两个锐角互余。若∠BAC=90°,则∠B+∠C=90°
3、直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。该性质称为直角三角形斜边中线定理。
多重随机标签