当前位置:首页 > 培训职业 > 正文

三角形中怎样判定两个直角三角形全等

直角三角形全等判定是根据HL定理,定理详细介绍如下:

1、简介:HL定理是证明两个直角三角形全等的定理,通过证明两个直角三角形斜边和直角边对应相等来证明两个三角形全等。判定定理为:如果两个直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等是一种特殊判定方法,可转换为SSS,是在这种情况下可以确定SAS成立的一种情况。

2、定理条件:证明两直角三角形全等的条件是两个直角三角形的一条斜边与一条直角边分别对应相等,则两个直角三角形全等,简称HL,前提是一定要是直角三角形可以和SSS转化。H是hypotenuse斜边的缩写,L是leg直角边的缩写。

3、定理内容:斜边和一条直角边对应相等的两个直角三角形,Rt三角形全等可以简写成HL,称这两个三角形为直角全等三角形。全等三角形的对应边相等,全等三角形的对应角相等。全等三角形的周长、面积相等。全等三角形的对应边上的高对应相等。全等三角形的对应角的角平分线相等。全等三角形的对应边上的中线相等。

多重随机标签

猜你喜欢文章